Fat quantification in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references.

نویسندگان

  • Pernilla Peterson
  • Thobias Romu
  • Håkan Brorson
  • Olof Dahlqvist Leinhard
  • Sven Månsson
چکیده

PURPOSE To investigate the precision, accuracy, and repeatability of water/fat imaging-based fat quantification in muscle tissue using a large flip angle (FA) and a fat reference for the calculation of the proton density fat fraction (FF). Comparison is made to a small FA water reference approach. MATERIALS AND METHODS An Intralipid phantom and both forearms of six patients suffering from lymphedema and 10 healthy volunteers were investigated at 1.5T. Two multigradient-echo sequences with eight echo times and FAs of 10° and 85° were acquired. For healthy volunteers, the acquisition of the right arm was performed twice with repositioning. From each set, water reference FF and fat reference FF images were reconstructed and the average FF and the standard deviation were calculated within the subfascial compartment. The small FA water reference was considered the reference standard. RESULTS A high agreement was found between the small FA water reference and large FA fat reference methods (FF bias = 0.31%). In this study, the large FA fat reference approach also resulted in higher precision (38% smaller FF standard deviation in homogenous muscle tissue), but no significant difference in repeatability between the various methods was detected (coefficient of repeatability of small FA water reference approach 0.41%). CONCLUSION The precision of fat quantification in muscle tissue can be increased with maintained accuracy using a larger flip angle, if a fat reference instead of a water reference is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-invasive quantification of liver fat content by different Gradient Echo MRI sequences in patients with Non-Alcoholic Fatty Liver Disease (NAFLD)

Introduction: Non-invasive quantification of liver fat by Gradient echo (GRE) Technique is an interesting issue in quantitative MRI. Despite the numerous advantages of this technique, fat measurement maybe biased by confounding and effects. The aim of this study was to evaluate the GRE pulse sequences with different   and  weighting for liver fat quantification in patients with...

متن کامل

Quantification of cervical spine muscle fat: a comparison between T1-weighted and multi-echo gradient echo imaging using a variable projection algorithm (VARPRO)

BACKGROUND Previous data using T1-weighted MRI demonstrated neck muscle fat infiltration (MFI) in patients with poor functional recovery following whiplash. Such findings do not occur in those with milder symptoms of whiplash, chronic non-traumatic neck pain or healthy controls, suggesting traumatic factors play a role. Muscle degeneration could potentially represent a quantifiable marker of po...

متن کامل

Background Gradient Correction for Water and Fat Quantification in 2D Liver Imaging

Introduction Fatty infiltration of the liver is one of the primary features of nonalcoholic fatty liver disease. Therefore, accurate quantification of the liver fat content is an important factor in detecting hepatic diseases. MRI is an efficient noninvasive tool for assessing liver fat content. A commonly used liver fat quantification technique with MRI is a dual echo imaging (two gradient seq...

متن کامل

3Tesla gradient-echo 3-point Dixon imaging for robust water-only imaging of the extra-ocular muscles

Introduction The extra-ocular (EO) muscles control movement of the eyes and are pathologically involved in conditions including thyroid eye disease [1] and progressive external ophthalmoplegia (PEO) arising from mitochondrial diseases [2]. Pathologies such as inflammation and atrophy of these muscles are routinely investigated on clinical MRI using techniques that suppress potentially confoundi...

متن کامل

NMR based biomarkers to study age-related changes in the human quadriceps

Age-related sarcopenia is a major health issue. To improve elderly person quality of life, it is important to characterize age-associated structural changes within the skeletal muscle. NMR imaging offers quantitative tools to monitor these changes. We scanned 93 subjects: 33 young adults aged between 19 and 27 years old and 60 older adults between 69 and 80 years old. Their physical activity wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 43 1  شماره 

صفحات  -

تاریخ انتشار 2016